Embed Code
Ratio betwee the amount of moisture in the air and the greatest amount of moisture the air could hold at the same temperature.
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Humidity" – news · newspapers · books · scholar · JSTOR (January 2025) (Learn how and when to remove this message) |
Humidity is the concentration of water vapor present in the air. Water vapor, the gaseous state of water, is generally invisible to the naked eye. Humidity indicates the likelihood for precipitation, dew, or fog to be present.

Humidity depends on the temperature and pressure of the system of interest. The same amount of water vapor results in higher relative humidity in cool air than warm air. A related parameter is the dew point. The amount of water vapor needed to achieve saturation increases as the temperature increases. As the temperature of a parcel of air decreases it will eventually reach the saturation point without adding or losing water mass. The amount of water vapor contained within a parcel of air can vary significantly. For example, a parcel of air near saturation may contain 8 g of water per cubic metre of air at 8 °C (46 °F), and 28 g of water per cubic metre of air at 30 °C (86 °F)
Three primary measurements of humidity are widely employed: absolute, relative, and specific. Absolute humidity is the mass of water vapor per volume of air (in grams per cubic meter). Relative humidity, often expressed as a percentage, indicates a present state of absolute humidity relative to a maximum humidity given the same temperature. Specific humidity is the ratio of water vapor mass to total moist air parcel mass.
Humidity plays an important role for surface life. For animal life dependent on perspiration (sweating) to regulate internal body temperature, high humidity impairs heat exchange efficiency by reducing the rate of moisture evaporation from skin surfaces. This effect can be calculated using a heat index table, or alternatively using a similar humidex.
The notion of air "holding" water vapor or being "saturated" by it is often mentioned in connection with the concept of relative humidity. This, however, is misleading—the amount of water vapor that enters (or can enter) a given space at a given temperature is almost independent of the amount of air (nitrogen, oxygen, etc.) that is present. Indeed, a vacuum has approximately the same equilibrium capacity to hold water vapor as the same volume filled with air; both are given by the equilibrium vapor pressure of water at the given temperature. There is a very small difference described under "Enhancement factor" below, which can be neglected in many calculations unless great accuracy is required.
English
Noun
relative humidity (countable and uncountable, plural relative humidities)
- (meteorology) The ratio of the actual amount of water vapor (absolute humidity) present in the air to the saturation point at the same temperature, usually expressed as a percentage.
Translations
See also
- specific humidity